
Introduction to parallel programming
using MPI

CPPG tutorial
December 15, 2017

Stéphane Ethier

(ethier@pppl.gov)
Computational Plasma Physics Group

Why Parallel Computing?
Why not run n instances of my code à la MapReduce/Hadoop?

 •  Want to speed up your calculation
•  Your problem size is too large for a single node
•  Want to use those extra cores on your multicore processor
•  Solution:

–  Split the work between several processor cores so that they can work in parallel
–  Exchange data between them when needed

•  How?
–  OpenMP directives on shared memory node
–  Message Passing Interface (MPI) on distributed memory systems (works also on

shared memory nodes!)
–  and others (Fortran Co-Arrays, OpenSHMEM, UPC, ...)

What is MPI?
•  MPI stands for Message Passing Interface
•  It is a message-passing specification, a standard for the vendors to

implement
•  In practice, MPI is a library consisting of C functions and Fortran

subroutines (Fortran) used for exchanging data between processes
•  An MPI library exists on ALL parallel computers so it is highly portable
•  The scalability of MPI is not limited by the number of processors/cores on

one computation node, as opposed to shared memory parallel models
•  Also available for Python (mpi4py.scipy.org), R (Rmpi), Lua, and Julia!

(if you can call C functions, you can use MPI...)

MPI standard
•  The MPI standard is a specification of what MPI is and how it should behave. Vendors

have some flexibility in the implementation (e.g. buffering, collectives, topology
optimizations, etc.).

•  This tutorial focuses on the functionality introduced in the original MPI-1 standard
•  MPI-2 standard introduced additional support for

–  Parallel I/O (many processes writing to a single file). Requires a parallel filesystem to be
efficient

–  One-sided communication: MPI_Put, MPI_Get
–  Dynamic Process Management

•  MPI-3 standard starting to be implemented by compilers vendors
–  Non-blocking collectives
–  Improved one-sided communications
–  Improved Fortran bindings for type check
–  And more (see http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf)

Why do I need to know both MPI?

(www.top500.org)

List of top
supercomputers
in the world

Titan Cray XK7 hybrid system at OLCF

Processor: AMD Interlagos (16) GPUs: 18,688 Tesla K20
Cabinets: 200 Memory/node CPU: 32 GB
nodes: 18,688 Memory/node GPU: 6 GB
cores/node: 16 Interconnect: Gemini
Total cores: 299,008 Speed: 27 PF peak (17.6)

Cray XK7 architecture

Nework interconnect

16-core AMD Opteron > 2000 “cores” nvidia K20X GPU
node

MPI
Context: Distributed memory parallel computers

–  Each processor has its own memory and cannot access the memory of other
processors

–  A copy of the same executable runs on each MPI process (processor core)

–  Any data to be shared must be explicitly transmitted from one to another
Most message passing programs use the single program multiple
data (SPMD) model

–  Each processor executes the same set of instructions
–  Parallelization is achieved by letting each processor operate on a

different piece of data
–  Not to be confused with SIMD: Single Instruction Multiple Data a.k.a

vector computing

A sample MPI program in Fortran 90
Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

Header file
Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Defines MPI-related parameters and functions
•  Must be included in all routines calling MPI functions
•  Can also use include file:
 include mpif.h

Initialization
Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Must be called at the beginning of the code
before any other calls to MPI functions

•  Sets up the communication channels between
the processes and gives each one a rank.

How many processes do we have?
Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Returns the number of processes available under
MPI_COMM_WORLD communicator

•  This is the number used on the mpiexec (or mpirun)
command:

 mpiexec –n nproc a.out

What is my rank?
Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Get my rank among all of the nproc processes under
MPI_COMM_WORLD

•  This is a unique number that can be used to distinguish
this process from the others

Termination
Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Must be called at the end of the properly
close all communication channels

•  No more MPI calls after finalize

A sample MPI program in C
#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

How much do I need to know?
•  MPI-1 has over 125 functions/subroutines
•  Can actually do everything with about 6 of them although I would not

recommend it
•  Collective functions are EXTREMELY useful since they simplify the

coding and vendors optimize them for their interconnect hardware
•  One can access flexibility when it is required.
•  One need not master all parts of MPI to use it.

MPI Communicators
•  A communicator is an identifier associated with a group of processes

–  Each process has a unique rank within a specific communicator (the rank starts
from 0 and has a maximum value of (nprocesses-1)).

–  Internal mapping of processes to processing units
–  Always required when initiating a communication by calling an MPI function

or routine.
•  Default communicator MPI_COMM_WORLD, which contains all

available processes.
•  Several communicators can coexist

–  A process can belong to different communicators at the same time, but has a
unique rank in each communicator

Okay... but how do we split the work between ranks?
Domain Decomposition!

•  Most widely used method for grid-based calculations

How to split the work between ranks?
Split matrix elements in PDE solves

•  See PETSc project: https://www.mcs.anl.gov/petsc/

How to split the work between ranks?
“Coloring”

•  Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

Compiling and linking an MPI code
•  Need to tell the compiler where to find the MPI include files and how to

link to the MPI libraries.
•  Fortunately, most MPI implementations come with scripts that take care of

these issues:
–  mpicc mpi_code.c –o a.out
–  mpiCC mpi_code_C++.C –o a.out
–  mpif90 mpi_code.f90 –o a.out

•  Two widely used (and free) MPI implementations on Linux clusters are:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich)
–  OPENMPI (http://www.openmpi.org)

Makefile
•  Always a good idea to have a Makefile

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c

 $(CC) $(CFLAGS) $< -o $@

How to run an MPI executable
•  The implementation supplies scripts to launch the MPI parallel calculation, for

example:
 mpirun –np nproc a.out

 mpiexec –n nproc a.out
 aprun –size nproc a.out (Cray XT)
 srun –n nproc a.out (SLURM batch system)
•  A copy of the same program runs on each processor core within its own

process (private address space).
•  Each process works on a subset of the problem.
•  Exchange data when needed

–  Can be exchanged through the network interconnect
–  Or through the shared memory on SMP machines (Bus?)

•  Easy to do coarse grain parallelism = scalable

MPICH, OPENMPI

mpirun and mpiexec
•  Both are used for starting an MPI job
•  If you don’t have a batch system, use mpirun

 mpirun –np #proc –hostfile mfile a.out >& out < in &

 %cat mfile
 machine1.princeton.edu machine1.princeton.edu
 machine2.princeton.edu OR machine1.princeton.edu
 machine3.princeton.edu machine1.princeton.edu
 machine4.princeton.edu machine1.princeton.edu

 1 MPI process per host 4 MPI processes on same host

•  SLURM batch system takes care of assigning the hosts

Batch System
•  Submit a job script: sbatch script
•  Check status of jobs: squeue –a (for all jobs)
•  Stop a job: scancel job_id

#!/bin/bash
#SBATCH --job-name=test
#SBATCH --partition=dawson # partition (dawson, ellis or kruskal)
#SBATCH -N 1 # number of nodes
#SBATCH -n 1 # number of cores
#SBATCH --mem 100 # memory to be used per node
#SBATCH -t 0-2:00 # time (D-HH:MM)
#SBATCH -o slurm.%N.%j.out # STDOUT
#SBATCH -e slurm.%N.%j.err # STDERR
#SBATCH --mail-type=END,FAIL # notifications for job done & fail
#SBATCH --mail-user=myemail@pppl.gov # send-to address
module load gcc/6.1.0
module load openmpi/1.10.3
mpiexec ./mpihello

Basic MPI calls to exchange data
•  Point-to-Point communications

–  Only 2 processes exchange data
–  It is the basic operation of all MPI calls

•  Collective communications
–  A single call handles the communication between all the processes in a

communicator
–  There are 3 types of collective communications

•  Data movement (e.g. MPI_Bcast)
•  Reduction (e.g. MPI_Reduce)
•  Synchronization: MPI_Barrier

Point-to-point communication
Point to point: 2 processes at a time

 MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

 MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
 recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are:

FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:
Broadcast

•  One process (called “root”) sends data to all the other processes in the same
communicator

•  Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:
Gather

•  One root process collects data from all the other processes in the same communicator
•  Must be called by all the processes in the communicator with the same arguments
•  “sendcount” is the number of basic datatypes sent, not received (example above would

be sendcount = 1)
•  Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:
Gather to All

•  All processes within a communicator collect data from each other and end up with the
same information

•  Must be called by all the processes in the communicator with the same arguments
•  Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:
Reduction

•  One root process collects data from all the other processes in the same communicator
and performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more
•  User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:
Reduction to All

•  All processes within a communicator collect data from all the other processes and
performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls
One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,
 recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

MPI “topology” routines
•  MPI_Cart_create(MPI_Comm oldcomm,

int ndim, int dims[], int qperiodic[], int
qreorder,
MPI_Comm *newcomm)

•  Creates a new communicator newcomm
from oldcomm, that represents an ndim
dimensional mesh with sizes dims. The
mesh is periodic in coordinate direction i
if qperiodic[i] is true. The ranks in the
new communicator are reordered (to
better match the physical topology) if
qreorder is true

Example of network topology

3D torus network interconnect
(e.g. Cray XE6 or XK7)

3D torus interconnect
On a large system!

nodes

MPI_Dims_create
•  MPI_Dims_create(int nnodes, int ndim, int dims[])

•  Fill in the dims array such that the product of dims[i] for i=0 to ndim-1
equals nnodes

•  Any value of dims[i] that is 0 on input will be replaced; values that are > 0
will not be changed

MPI_Cart_create Example
•  int periods[3] = {1,1,1};

int dims[3] = {0,0,0}, wsize; MPI_Comm cartcomm;

•  MPI_Comm_size(MPI_COMM_WORLD, &wsize);
MPI_Dims_create(wsize, 3, dims);
MPI_Cart_create(MPI_COMM_WORLD, 3, dims, periods, 1, cartcomm);

•  Creates a new communicator cartcomm that “may” be efficiently mapped
to the physical topology

Determine Neighbor Ranks
•  Can be computed from rank (in the cartcomm), dims, and periods, since

ordering defined in MPI

•  Easier to use either
–  MPI_Cart_coords

–  MPI_Cart_rank

–  MPI_Cart_shift

MPI_Cart_shift
•  MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

•  Returns the ranks of the processes that are a shift of disp steps in
coordinate direction

•  Useful for nearest neighbor communication in the coordinate directions

•  Use MPI_Cart_coords, MPI_Cart_rank for more general patterns

Blocking communications
•  The call waits until the data transfer

is done
–  The sending process waits until all

data are transferred to the system
buffer (differences for eager vs
rendezvous protocols...)

–  The receiving process waits until all
data are transferred from the system
buffer to the receive buffer

•  All collective communications are
blocking

Non-blocking

•  Returns immediately after the
data transferred is initiated

•  Allows to overlap computation
with communication

•  Need to be careful though
–  When send and receive buffers

are updated before the transfer
is over, the result will be
wrong

Non-blocking send and receive
Point to point:

 MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)

 MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

 MPI_Wait(request,status,ierr)

 MPI_Test(request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-local
operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it
returns “flag = false”. This is a local operation.

MPI-3 standard introduces “non-blocking collective calls”

How to time your MPI code
•  Several possibilities but MPI provides an easy to use function called

“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of
time in the past.

 FORTRAN: double precision MPI_WTIME()
 C: double MPI_Wtime()

 starttime=MPI_WTIME()
 … program body …
 endtime=MPI_WTIME()
 elapsetime=endtime-starttime

Debugging tips
Use “unbuffered” writes to do “printf-debugging” and always write out the
process id:
 C: fprintf(stderr,”%d: …”,myid,…);
 Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The
errorcode is returned to the calling environment so it can be any number.
 C: MPI_Abort(MPI_Comm comm, int errorcode);
 Fortran: call MPI_ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
 C: if (isnan(var))
 Fortran: if (var /= var)

Use a parallel debugger such as Totalview or DDT if available

References
•  Just google “mpi”, or “mpi standard”, or “mpi tutorial”…
•  http://www.mpi-forum.org (location of the MPI standard)
•  http://www.llnl.gov/computing/tutorials/mpi/
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
•  http://www-unix.mcs.anl.gov/mpi/tutorial/

•  MPI on Linux clusters:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
–  Open MPI (http://www.open-mpi.org/)

•  Books:
–  Using MPI “Portable Parallel Programming with the Message-Passing Interface” by William Gropp, Ewing

Lusk, and Anthony Skjellum
–  Using MPI-2 “Advanced Features of the Message-Passing Interface”

Example: calculating π using numerical
integration

#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 FILE *ifp;

 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 printf("number of intervals = %d\n",n);

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = 1; i <= n; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = mypi;
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 return 0;
}

C version

#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i, j, tag, my_n;
 double PI25DT = 3.141592653589793238462643;
 double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
 FILE *ifp;
 MPI_Status Stat;
 MPI_Request request;

 n = 1;
 tag = 1;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 tt0 = MPI_Wtime();
 if (myid == 0) {
 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 }
 /* Global communication. Process 0 "broadcasts" n to all other processes */
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads
input and

broadcast to all

Each process calculates its section of the integral
and adds up results with MPI_Reduce

…
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = 0.; /* It is not necessary to set pi = 0 */

 /* Global reduction. All processes send their value of mypi to process 0
 and process 0 adds them up (MPI_SUM) */
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 ttf = MPI_Wtime();
 printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",
 myid, pi, fabs(pi - PI25DT), (ttf-tt0));

 MPI_Finalize();
 return 0;
}

Python example
•  http://mpi4py.scipy.org/docs/usrman/tutorial.html
•  mpiexec -n 4 python script.py

Script.py	

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
 data = {'a': 7, 'b': 3.14}
 comm.send(data, dest=1, tag=11)
elif rank == 1:
 data = comm.recv(source=0, tag=11)

•  Uses “pickle” module to get
access to C-type contiguous
memory buffer

•  Evolving rapidly

Thank you...

